Add like
Add dislike
Add to saved papers

Oxidative stress inactivates ecto-5'-nucleotidase by inhibiting protein kinase C in rat hearts in vivo.

Examined in the present study, allopurinol are xanthine oxidase inhibitors for use in rat hearts in vivo dialysis technology and ventricular myocardial intersitial adenosine production can increase. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rat hearts and the tissue in the vicinity of the dialysis was perfused with Tyrode's solution containing adenosine 5'-monophosphate (AMP) through the dialysis probe at a rate of 1.0ml/min to assess the activity of ecto-5'-nucleotidase. Allopurinol (10μM) significantly increased the level of adenosine in rat heart dialysate (n=6, p<0.05), which was inhibited by chelerythrine, 10μM, an antagonist of protein kinase C (PKC). Another free radical scavenger, coenzyme Q10 (CoQ10, 100μM) or ascorbic acid (Vitamin C; 100μM) also increased adenosine production. In addition, allopurinol enhanced the diacylglycerol (DAG; 50μM)-induced also increases in adenosine production by 71.5±12.0% (n=6, P<0.05), to a level significantly (P<0.05) greater than the increase caused by DAG alone (33.0±10.6%). In the presence of allopurinol (10μM), a marked elevation of AMP-primed dialysate adenosine in ischemia/reperfused rat hearts was observed. Free radical generation may suppress adenosine production via activation of PKC. The results suggest that oxidative stress may cause inactivation of nucleotidase, adenosine production in rat heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app