Add like
Add dislike
Add to saved papers

A facile approach for surface alteration of Pseudomonas putida I3 by supplying K2SO4 into growth medium: Enhanced removal of Pb(II) from aqueous solution.

A new sight of obtaining a high efficient biosorbent by supplying specific salts into bacterial growth medium was investigated in this study for Pb(II). Among a series of salts including Na2SO4, Na2S2O3, KCl, and K2SO4, the highest Pb(II) removal efficiency was observed by psychrotrophilic Pseudomonas putida I3 grown in the presence of 30g/L K2SO4 (KSI3-30) with biosorption capacity of 62.89mg/g under cold condition (15°C), which was increased by 42.35% as compared to control (without any additive, RI3). This stimulation effect was ascribed to the increase of potassium and sulfur containing groups on KSI3-30 surface via metabolic dependent ways. The probable mechanism for Pb(II) adsorption was ion-exchange and chemical complexation. The thermal and kinetic data well fitted to Langmuir adsorption model and pseudo-second order and intraparticle diffusion kinetic model. Good recyclability and effectively dealing with real wastewater suggested KSI3-30 was a promising biosorbent for Pb-contaminated wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app