Add like
Add dislike
Add to saved papers

Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system.

We report on an innovative heterogeneous bisphenol A (BPA) immunoassay based on an electrolyte-gated organic field-effect transistor whose organic semiconductor is poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) co-crystallized with an alkyl derivative of bisphenol A. A decrease of the transistor output current is first observed upon antibody specific binding onto the organic semiconductor. Upon bisphenol A addition, the competitive dissociation of the antibody from the semiconductor surface leads to an opposite increase of the output current. We present here a proof-of-concept for bisphenol A detection; the device could be readily adapted to other small organic molecules of interest and is a promising tool for simple, low-cost, portable and easy-to-use biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app