Add like
Add dislike
Add to saved papers

Vibrational analysis of implants and tissues: Calibration and mechanical spectroscopy of multi-component materials.

Several new methods have been used to non-destructively evaluate the mechanical properties of materials and tissues including magnetic resonance elastography, ultrasound elastography, optical coherence elastography, and various forms of vibrational analysis. One of the limitations of using these methods is the need to establish a relationship between the modulus measured using each new technique and moduli measured using well-established techniques such as constant rate-of-strain and incremental stress-strain curves. In addition, there are no available methods for analyzing the mechanical properties of the individual components of multi-component materials. In this article, we present data showing that there is a strong correlation (correlation coefficient >0.9) between the modulus measured using classical uniaxial tensile incremental stress-strain tests and those made using a combination of optical coherence tomography and vibrational analysis. Beyond this, we demonstrate that the moduli of the major structural components of pig skin can be measured using this technique. These results suggest that optical coherence tomography in concert with vibrational analysis can be used to measure the moduli of biological and implant materials without having to determine Poisson's ratio. In addition, each of the moduli of the major fibrous components of pig skin can be measured concurrently using this technique. These results may be useful in the characterization of synthetic implants and tissue derived materials without requiring removal of one or more components that are to be characterized. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1666-1671, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app