Add like
Add dislike
Add to saved papers

Simultaneous Formation and Spatial Patterning of ZnO on ITO Surfaces by Local Laser-Induced Generation of Microbubbles in Aqueous Solutions of [Zn(NH 3 ) 4 ] 2 .

We demonstrate the simultaneous formation and spatial patterning of ZnO nanocrystals on an indium-tin oxide (ITO) surface upon local heating using a laser (1064 nm) and subsequent formation of microbubbles. Laser irradiation of an ITO surface in aqueous [Zn(NH3 )4 ]2+ solution (1.0 × 10-2 M at pH 12.0) under an optical microscope produced ZnO nanocrystals, the presence of which was confirmed by X-ray diffraction analysis and Raman microspectroscopy. Scanning the focused laser beam over the ITO surface generated a spatial ZnO pattern (height: ∼60 nm, width: ∼1 μm) in the absence of a template or mask. The Marangoni convection generated in the vicinity of the microbubbles resulted in a rapid concentration/accumulation of [Zn(NH3 )4 ]2+ around the microbubbles, which led to the formation of ZnO at the solid-bubble-solution three-phase contact line around the bubbles and thus afforded ZnO nanocrystals on the ITO surface upon local heating with a laser.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app