Add like
Add dislike
Add to saved papers

Understanding of Strain Effect in Electrochemical Reduction of CO2 : Using Pd Nanostructures as an Ideal Platform.

Angewandte Chemie 2017 Februrary 21
Tuning the surface strain of heterogeneous catalysts represents a powerful strategy to engineer their catalytic properties by altering the electronic structures. However, a clear and systematic understanding of strain effect in electrochemical reduction of carbon dioxide is still lacking, which restricts the use of surface strain as a tool to optimize the performance of electrocatalysts. Herein, we demonstrate the strain effect in electrochemical reduction of CO2 by using Pd octahedra and icosahedra with similar sizes as a well-defined platform. The Pd icosahedra/C catalyst shows a maximum Faradaic efficiency for CO production of 91.1 % at -0.8 V versus reversible hydrogen electrode (vs. RHE), 1.7-fold higher than the maximum Faradaic efficiency of Pd octahedra/C catalyst at -0.7 V (vs. RHE). The combination of molecular dynamic simulations and density functional theory calculations reveals that the tensile strain on the surface of icosahedra boosts the catalytic activity by shifting up the d-band center and thus strengthening the adsorption of key intermediate COOH*. This strain effect was further verified directly by the surface valence-band photoemission spectra and electrochemical analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app