Add like
Add dislike
Add to saved papers

Detection of Palladium(I) in Aerobic Oxidation Catalysis.

Angewandte Chemie 2017 March 21
Palladium(II)-catalyzed oxidation reactions exhibit broad utility in organic synthesis; however, they often feature high catalyst loading and low turnover numbers relative to non-oxidative cross-coupling reactions. Insights into the fate of the Pd catalyst during turnover could help to address this limitation. Herein, we report the identification and characterization of a dimeric PdI species in two prototypical Pd-catalyzed aerobic oxidation reactions: allylic C-H acetoxylation of terminal alkenes and intramolecular aza-Wacker cyclization. Both reactions employ 4,5-diazafluoren-9-one (DAF) as an ancillary ligand. The dimeric PdI complex, [PdI (μ-DAF)(OAc)]2 , which features two bridging DAF ligands and two terminal acetate ligands, has been characterized by several spectroscopic methods, as well as single-crystal X-ray crystallography. The origin of this PdI complex and its implications for catalytic reactivity are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app