Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells.

Hypoxia is a hallmark of gliomas that is often associated with poor prognosis and resistance to therapies. Insufficient oxygen supply reduces the proliferation rate of tumor cells, which contributes to a slower progression of the lesion, but also increases the invasiveness of the tumor, making it more aggressive. To understand how these two counteracting mechanisms combine and modify the tumor's global growth, this paper proposes a quantitative approach based on a biomathematical model. The model predicts that the net effect of the proliferative-to-invasive transition leads to a lower survival even for slight increments of the invasive capacity of hypoxic tumor cells. The model also shows that tumor cells use the phenotype change to normalize the levels of oxygen in the tissue. The model results can be directly compared to in vivo data obtained using anatomic and molecular imaging modalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app