Add like
Add dislike
Add to saved papers

A Graph Partitioning Approach to Simultaneous Angular Reconstitution.

One of the primary challenges in single particle reconstruction with cryo-electron microscopy is to find a three-dimensional model of a molecule using its noisy two-dimensional projection-images. As the imaging orientations of the projection-images are unknown, we suggest a common-lines-based method to simultaneously estimate the imaging orientations of all images that is independent of the distribution of the orientations. Since the relative orientation of each pair of images may only be estimated up to a two-way handedness ambiguity, we suggest an efficient procedure to consistently assign the same handedness to all relative orientations. This is achieved by casting the handedness assignment problem as a graph-partitioning problem. Once a consistent handedness of all relative orientations is determined, the orientations corresponding to all projection-images are determined simultaneously, thus rendering the method robust to noise. Our proposed method has also the advantage of allowing one to incorporate confidence information regarding the trustworthiness of each relative orientation in a natural manner. We demonstrate the efficacy of our approach using simulated clean and noisy data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app