JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Utilization of the bootstrap method for determining confidence intervals of parameters for a model of MAP1B protein transport in axons.

This paper develops a model of axonal transport of MAP1B protein. The problem of determining parameter values for the proposed model utilizing limited available experimental data is addressed. We used a global minimum search algorithm to find parameter values that minimize the discrepancy between model predictions and published experimental results. By analyzing the best fit parameter values it was established that some processes can be dropped from the model without losing accuracy, thus a simplified version of the model was formulated. In particular, our analysis suggests that reversals in MAP1B transport are infrequent and can be neglected. The detachment of anterogradely-biased MAP1B from microtubules (MTs) and the attachment of retrogradely-biased MAP1B to MTs can also be neglected. An analytical solution for the simplified model was obtained. Confidence intervals for the determined parameters were found by bootstrapping model residuals. The resultant analysis heavily constrained the values of some parameters while showing that some could vary without significantly impacting model error. For example, our analysis suggests that, above a certain threshold value, the kinetic constant determining the rate of MAP1B transition from the retrograde pausing state to the off-track state has little impact on model error. On the contrary, the kinetic constant describing MAP1B transition from a pausing to a running state has great impact on model error.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app