Add like
Add dislike
Add to saved papers

Circuit Homology between Decussating Pathways in the Ciona Larval CNS and the Vertebrate Startle-Response Pathway.

Comparing synaptic circuits and networks between brains of different animal groups helps us derive an understanding of how nervous systems might have evolved. The circuits of the startle response pathway in the brains of tailed vertebrates are known from electrophysiological studies on the giant reticulospinal Mauthner cells (M-cells). To identify morphological counterparts in chordate tunicates, a sister group of vertebrates [1, 2], we have compiled a densely reconstructed connectome (defined in [3]) for the CNS in the tadpole larva of Ciona intestinalis (L.), using ssEM [4]. The dorsal, tubular CNS of the ∼1-mm tadpole larva is built on a similar plan to vertebrates, its neurons distributed rostrocaudally in three centers, a brain vesicle, motor ganglion, and caudal nerve cord [5]. A single pair of descending decussating neurons, ddNs, found in the motor ganglion, have similarities to reticulospinal neurons descending from the vertebrate hindbrain to the spinal cord. The pre- and postsynaptic connections and circuits of these ddNs support their homology with decussating vertebrate M-cells. Network analysis reveals that, like M-cells, ddNs receive mechanosensory input from the peripheral nervous system and provide input to motoneurons, premotor interneurons, and ascending commissural inhibitory neurons (ACINs). These circuits uncover a putative homologous startle network in the Ciona tadpole. However, differences in circuits, including a lack of bilateral symmetry in their network, and convergence of inputs from left and right sides, raise questions about the relationship between form and function, and are a possible outcome of the tiny number of neurons in ascidian larvae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app