Add like
Add dislike
Add to saved papers

Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells.

Vancomycin (VCM) is a first-line antibiotic for serious infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is one of the most complaint in VCM therapy. We previously reported that VCM induced apoptosis in a porcine proximal tubular epithelial cell line (LLC-PK1), in which mitochondrial complex I may generate superoxide, leading to cell death. In the present study, VCM caused production of mitochondrial reactive oxygen species and peroxidation of the mitochondrial phospholipid cardiolipin that was reversed by administration of the mitochondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). FCCP also significantly suppressed VCM-induced depolarization of the mitochondrial membrane and apoptosis. Moreover, the lipophilic antioxidant vitamin E and a mitochondria-targeted antioxidant, mitoTEMPO, also significantly suppressed VCM-induced depolarization of mitochondrial membrane and apoptosis, whereas vitamin C, n-acetyl cysteine, or glutathione did not provide significant protection. These findings suggest that peroxidation of the mitochondrial membrane cardiolipin mediated the VCM-induced production of intracellular reactive oxygen species and initiation of apoptosis in LLC-PK1 cells. Furthermore, regulation of mitochondrial function using a mitochondria-targeted antioxidant, such as mitoTEMPO, may constitute a potential strategy for mitigation of VCM-induced proximal tubular epithelial cell injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app