Add like
Add dislike
Add to saved papers

Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone.

Mathematical models of pesticide fate and behaviour in soils have been developed over the last 30years. Most models simulate fate of pesticides in a 1-dimensional system successfully, supporting a range of applications where the prediction target is either bulk residues in soil or receiving compartments outside of the soil zone. Nevertheless, it has been argued that the 1-dimensional approach is limiting the application of knowledge on pesticide fate under specific pesticide placement strategies, such as seed, furrow and band applications to control pests and weeds. We report a new model (2-DROPS; 2-Dimensional ROots and Pesticide Simulation) parameterised for maize and we present simulations investigating the impact of pesticide properties (thiamethoxam, chlorpyrifos, clothianidin and tefluthrin), pesticide placement strategies (seed treatment, furrow, band and broadcast applications), and soil properties (two silty clay loam and two loam top soils with either silty clay loam, silt loam, sandy loam or unconsolidated bedrock in the lower horizons) on microscale pesticide distribution in the soil profile. 2-DROPS is to our knowledge the first model that simulates temporally- and spatially-explicit water and pesticide transport in the soil profile under the influence of explicit and stochastic development of root segments. This allows the model to describe microscale movement of pesticide in relation to root segments, and constitutes an important addition relative to existing models. The example runs demonstrate that the pesticide moves locally towards root segments due to water extraction for plant transpiration, that the water holding capacity of the top soil determines pesticide transport towards the soil surface in response to soil evaporation, and that the soil type influences the pesticide distribution zone in all directions. 2-DROPS offers more detailed information on microscale root and pesticide appearance compared to existing models and provides the possibility to investigate strategies targeting control of pests at the root/soil interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app