Add like
Add dislike
Add to saved papers

Precise tracking of the dynamics of multiple proteins in endocytic events.

Endocytosis is a complex and dynamic process that involves dozens of different proteins to define the site of endocytosis, form a membrane invagination, and pinch off a membrane vesicle into the cytoplasm. Fluorescent light microscopy is a powerful tool to visualize the dynamic behaviors of the proteins taking part in the endocytic process. The resolution of light microscopy is, however, a serious limitation. Here, we detail a fluorescence microscope method that we have developed to visualize the dynamics of the clathrin-mediated endocytic protein machinery in yeast cells. This method is based on subpixel centroid tracking of endocytic proteins. For each endocytic protein, the centroid trajectories obtained from multiple endocytic events are used to compute an average trajectory that describes, at nanometer scale, the assembly and movement of the protein during endocytosis. The average trajectories of the different endocytic proteins are then aligned together in space and time to reconstruct how the different proteins behave relative to each other during the endocytic process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app