Add like
Add dislike
Add to saved papers

Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp.

Ibuprofen (IBU) is one of the most widely used and frequently detected human pharmaceuticals in aquatic environment. However, the toxicity of IBU on diatom and its fate remain still unkown. In the present study, the toxicity of IBU on the diatom was evaluated by the algal growth rate, the chlorophyll-a and carotenoids contents. The degradation of IBU including in particular the potential for the formation of incomplete degradation products was also explored. Biochemical characteristics of Navicula sp. were significantly inhibited at IBU concentrations up to 50mgL-1 after 10days of exposure. The degradation of IBU was retarded by Navicula sp. at low concentration (1mgL-1 ), with t1/2 being extended from 9.6±1.8 d to 12.0±1.5 d, indicating that Navicula sp. could prolong the exposure time of IBU. A total of 8 metabolites were identified by LC-MS/MS and the degradation pathway of IBU in Navicula sp. was proposed. Hydroxylation, acylation, demethylation, and glucuronidation contributed to IBU transformative reactions in diatom cells. These findings indicate that the presence of diatom Navicula sp. could hinder degradation of IBU, and IBU and/or its metabolites may pose high risks on aquatic ecosystem in natural waters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app