Add like
Add dislike
Add to saved papers

Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise.

Muscle & Nerve 2018 January
INTRODUCTION: We investigated differences in metabolic stress (lactate) and muscle activation (electromyography; EMG) when high-load resistance exercise (HL) is compared with a condition in which blood flow restriction (BFR) is applied during the exercise or during the rest interval.

METHODS: Twelve participants performed HL with BFR during the intervals (BFR-I), during the set (BFR-S), and without BFR. Each condition consisted of 3 sets of 8 repetitions with knee extension at 70% of 1-repetition maximum. Lactate and root mean square (RMS) from the surface EMG of the vastus lateralis were calculated.

RESULTS: Lactate increased in all protocols but was higher with BFR-I than with BFR-S and HL. RMS decreased under all conditions, with a larger effect size in BFR-I (1.47) than in BFR-S (0.66) and HL (0.59).

DISCUSSION: BFR-I increases lactate, possibly as a result of reduced restoration of ATP. Muscle activation seems to be impacted by mechanical stress but may be reduced by metabolic stress. Muscle Nerve 57: 107-111, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app