Add like
Add dislike
Add to saved papers

Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4.

PURPOSE: CD4+CD25+regulatoryT cells (Tregs) play an important role in anti-tumor immune responses. Poor prognosis and declining survival rates have intimate connection with high Treg expression in cancer patients. Cytotoxic T Lymphocyte-associated protein (CTLA-4) is one of the most prominent molecules on Treg. In our previous research, we have demonstrated that HCC-derived Tregs can interfere with Dendritic cells (DCs) function and down-modulate CD80/CD86 on DCs in vitro in a cell-contact dependent way. However the mechanism of how HCC-derived Treg affect DC phenotype are not very clear. Therefore, we investigated the function of CTLA-4 in anti-tumor immune responses.

MATERIALS AND METHODS: We established BABL/C mouse with hepatocellular carcinoma model, and tumor-derived Tregs were purified by magnetic cell sorting using mouse CD4+CD25+regulatoryT cell isolation kit. Splenic DCs were enriched using CD11c-conjugated microbeads. Then splenic DCs co-cultured with tumor-derived Tregs and antibody-blocking experiments was performed.

RESULTS: In our research, we found the down-modulation of CD80/CD86 on DCs was inhibited by blocking CTLA-4. HCC-derived Tregs down-modulated CD80/CD86 on DCs in a CTLA-4-dependent way. Blockade of CTLA-4 can lead to increase DC-mediated immunity.

CONCLUSION: CTLA-4 play a vital role in Treg-mediated immnue inhibition and this discovery can open up new ideas for the development of therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app