Add like
Add dislike
Add to saved papers

A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland.

The cost-effectiveness of six edge-of-field measures for mitigating diffuse pollution from sediment bound phosphorus (P) runoff from temperate arable farmland is analysed at catchment/field scales. These measures were: buffer strips, permanent grassland in the lowest 7% of arable fields, dry detention bunds, wetlands, and temporary barriers such as sediment fences. Baseline field P export was estimated using export coefficients (low risk crops) or a modified Universal Soil Loss Equation (high risk crops). The impact of measures was estimated using simple equations. Costs were estimated from gross margin losses or local data on grants. We used a net cost:benefit (NCB) factor to normalise the costs and impacts of each measure over time. Costs minimisation for target impact was done using PuLP, a linear programming module for Python, across 1634 riparian and non-riparian fields in the Lunan Water, a mixed arable catchment in Eastern Scotland. With all measures in place, average cost-effectiveness increases from £9 to £48/kg P as target P mitigation increases from 500 to 2500kg P across the catchment. Costs increase significantly when the measures available are restricted only to those currently eligible for government grants (buffers, bunds and wetlands). The assumed orientation of the average field slope makes a strong difference to the potential for storage of water by bunds and overall cost-effectiveness, but the non-funded measures can substitute for the extra expense incurred by bunds, where the slope orientation is not suitable. Economic discounting over time of impacts and costs of measures favours those measures, such as sediment fences, which are strongly targeted both spatially and temporally. This tool could be a useful guide for dialogue with land users about the potential fields to target for mitigation to achieve catchment targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app