JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

NLRP6: A Multifaceted Innate Immune Sensor.

NLRP6, a member of the nucleotide-binding domain, leucine-rich repeat-containing (NLR) innate immune receptor family, regulates inflammation and host defense against microorganisms. Similar to other NLRs, NLRP6 not only participates in inflammasome formation, but is also involved in nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling regulation and facilitation of gastrointestinal antiviral effector functions. Additionally, NLRP6 contributes to the regulation of mucus secretion and antimicrobial peptide production, thereby impacting intestinal microbial colonization and associated microbiome-related infectious, autoinflammatory, metabolic, and neoplastic diseases. However, several of the mechanisms attributed to the functions of NLRP6 remain debatable, leaving open questions as to the relevant molecular mechanisms and interacting partners, and putative human relevance. We herein discuss recent findings related to NLRP6 activity, while highlighting outstanding questions and future perspectives in elucidating its roles in health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app