JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure.

Diabetes 2017 May
Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app