JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An Extra Amino Acid Residue in Transmembrane Domain 10 of the γ-Aminobutyric Acid (GABA) Transporter GAT-1 Is Required for Efficient Ion-coupled Transport.

The GABA transporter GAT-1 mediates electrogenic transport of its substrate together with sodium and chloride. It is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Compared with all other neurotransmitter:sodium:symporters, GAT-1 and other members of the GABA transporter subfamily all contain an extra amino acid residue at or near a conserved glycine in transmembrane segment 10. Therefore, we studied the functional impact of deletion and replacement mutants of Gly-457 and its two adjacent residues in GAT-1. The glycine replacement mutants were devoid of transport activity, but remarkably the deletion mutant was active, as were mutants obtained by deleting positions on either side of Gly-457. However, the inward rectification of GABA-induced transport currents by all three deletion mutants was diminished, and the charge-to-flux ratio was increased by more than 2.5-fold, both of which indicate substantial uncoupled transport. These observations suggest that the deletions render the transporters less tightly packed. Consistent with this interpretation, the inactive G457A mutant was partially rescued by removing the adjacent serine residue. Moreover, the activity of several gating mutants was also partially rescued upon deletion of Gly-457. Structural modeling showed that the stretch surrounding Gly-457 is likely to form a π-helix. Our data indicate that the "extra" residue in transmembrane domain 10 of the GABA transporter GAT-1 provides extra bulk, probably in the form of a π-helix, which is required for stringent gating and tight coupling of ion and substrate fluxes in the GABA transporter family.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app