Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Higher mini-BAL total protein concentration in early ARDS predicts faster resolution of lung injury measured by more ventilator-free days.

The protein concentration of alveolar edema fluid in acute respiratory distress syndrome (ARDS) is dynamic. It reflects alveolar flooding during acute injury, as well as fluid and protein clearance over time. We hypothesized that among ARDS patients treated with low tidal volume ventilation, higher concentrations of protein in mini-bronchoalveolar lavage (mBAL) samples would predict slower resolution of lung injury and worse clinical outcomes. Total protein and IgM concentrations in day 0 mBAL samples from 79 subjects enrolled in the aerosolized albuterol (ALTA) ARDS Network Albuterol Trial were measured by colorimetric assay and ELISA, respectively. Linear regression models were used to test the association of mBAL proteins with clinical outcomes and measures of length of illness, including ventilator-free days (VFDs). Median mBAL total protein concentration was 1,740 μg/ml [interquartile range (IQR): 890-3,170]. Each 500 μg/ml increase in day 0 mBAL total protein was associated with an additional 0.8 VFDs [95% confidence interval (CI): 0.05-1.6, P value = 0.038]. Median mBAL IgM concentration was 410 ng/ml (IQR: 340-500). Each 50 ng/ml increase in mBAL IgM was associated with an additional 1.1 VFDs (95% CI 0.2-2.1, P value = 0.022). These associations remained significant and were not attenuated in multivariate models adjusted for age, serum protein concentration, and vasopressor use in the 24 h before enrollment. Thus, higher mBAL total protein and IgM concentrations at day 0 are associated with more VFDs in patients with ARDS and may identify patients with preserved alveolar epithelial mechanisms for net alveolar fluid clearance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app