JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Epithelial Morphogenesis during Liver Development.

Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app