Add like
Add dislike
Add to saved papers

Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection.

Marine species have evolved a variety of physical or chemical strategies to diminish damage from elevated environmental ultraviolet radiation. Mycosporine-like amino acids, a group of widely distributed small water soluble compounds, are biologically relevant because of their photo-protective potential. In addition, presumed antioxidant and skin protective strategies raise the interest for possible medicinal and cosmetic applications. In this study the first CE method for the quantification of mycosporine-like amino acids in marine species is presented. A borate buffer system consisting of 30mM sodium tetraborate in water at a pH-value of 10.3 enabled the baseline separation of five MAAs, namely palythine, mycosporine-serinol, asterina-330, shinorine and porphyra-334, in 27min. Separation voltage, temperature and detection wavelength were 25kV, 25°C and 320nm, respectively. The optimized method was fully validated and applied for the quantitative determination of MAAs in the marine macroalgae Palmaria palmata, Porphyra umbilicalis, and Porphyra sp., as well as the lichen Lichina pygmaea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app