Add like
Add dislike
Add to saved papers

Purification and characterisation of a pronase-inducible lectin isolated from human serum.

A new lectin was purified to electrophoretic homogeneity from pronase treated human serum by a single-step of affinity chromatography on concanavalin A-Sepharose 4B. The isolated lectin agglutinated five types of vertebrate RBC, with highest titer against hen RBC. This activity was independent of divalent cations, insensitive to EDTA and specific to mannosamine, glucosamine as well as galactosamine. Purified lectin gave a single symmetrical peak in its native form with a molecular mass estimate of 6kDa in FPLC analysis and 6.5kDa by MALDI-TOF MS. SDS-PAGE analysis of the lectin revealed that it is a homo-oligomer of a 3kDa subunit protein. Isolated lectin did possess both, hemagglutinating and phenoloxidase activities, but did not exhibit any antibacterial or antifungal activities. In addition, this lectin could oxidize all nine different phenolic substrates tested, with hydroquinone proving to be the best among them. Phenoloxidase inhibitors namely, phenylthiourea and tropolone inhibited this oxidation activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app