JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors.

Nano Letters 2017 March 9
Two-dimensional materials, such as graphene and monolayer transition metal dichalcogenides, allow the fabrication of multilayer structures without lattice matching restriction. A central issue in developing such artificial materials is to understand and control the interlayer electron transfer process, which plays a key role in harnessing their emergent properties. Recent photoluminescence and transient absorption measurements revealed that the electron transfer in heterobilayers occurs on ultrafast time scales. However, there is still a lack of fundamental understanding on how this process can be so efficient at van der Waals interfaces. Here we show evidence suggesting the coherent nature of such interlayer electron transfer. In a trilayer of MoS2 -WS2 -MoSe2 , electrons excited in MoSe2 transfer to MoS2 in about one picosecond. Surprisingly, these electrons do not populate the middle WS2 layer during this process. Calculations showed the coherent nature of the charge transfer and reproduced the measured electron transfer time. The hole transfer from MoS2 to MoSe2 is also found to be efficient and ultrafast. The separation of electrons and holes extends their lifetimes to more than one nanosecond, suggesting potential applications of such multilayer structures in optoelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app