Add like
Add dislike
Add to saved papers

Surface-Induced Changes in the Thermochromic Transformation of an Ionic Liquid Cobalt Thiocyanate Complex.

We demonstrate that a thermodynamic complex equilibrium within an ionic liquid film can be significantly influenced by the presence of the liquid-vacuum interface. Using surface-sensitive X-ray photoelectron spectroscopy, we find that the temperature-driven transition from the blue-colored tetrahedral [Co(II) (NCS)4 ]2- to the red-colored octahedral [Co(II) (NCS)6 ]4- complex already occurs within the outermost nanometers at around +4 °C as compared with -25 °C in the bulk. This thermochromic transformation in the near-surface region goes along with a loss in preferential surface orientation of free [SCN]- anions and with a pronounced decrease in the complex density; both effects are attributed to the formation of a weakly bound solvation shell around the [Co(II) (NCS)6 ]4- anion, leading to an effective complex dilution. Our results are not only relevant for high-surface area thin film systems, such as in sensor and catalysis applications, but also shed light on the role of ionic liquid surfaces in particular and liquid surfaces in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app