JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metal-Free Synthesis of C-4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study.

Density functional theory investigations revealed that the pyridine-boryl radical generated in situ using 4-cyanopyridine and bis(pinacolato)diboron could be used as a bifunctional "reagent", which serves as not only a pyridine precursor but also a boryl radical. With the unique reactivity of such radicals, 4-substituted pyridine derivatives could be synthesized using α,β-unsaturated ketones and 4-cyanopyridine via a novel radical addition/C-C coupling mechanism. Several controlled experiments were conducted to provide supportive evidence for the proposed mechanism. In addition to enones, the scope could be extended to a wide range of boryl radical acceptors, including various aldehydes and ketones, aryl imines and alkynones. Lastly, this transformation was applied in the late-stage modification of a complicated pharmaceutical molecule.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app