Add like
Add dislike
Add to saved papers

A Fluorescent Anionic MOF with Zn 4 (trz) 2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP.

Inorganic Chemistry 2017 March 7
Heavy-metal ions and nitroaromatic substances are highly toxic and harmful to human health and the ecological environment. It is an urgent issue to selectively detect and capture these toxic substances. By introducing the triazole ligand to the π-conjugated aromatic carboxylate system and borrowing the organic template open framework idea, a stable fluorescent framework [Me2 NH2 ]4 [Zn6 (qptc)3 (trz)4 ]·6H2 O (1) (H4 qptc = terphenyl-2,5,2'5'-tetracarboxylic acid, trz = 1,2,4-triazole) has been successfully synthesized, which features Zn4 (trz)2 chain-based 3D anionic structure with channels filled by [Me2 NH2 ]+ cations. It is worth noting that the material exhibits selective adsorption and recyclable detection of heavy-metal Cr3+ ion in aqueous solutions, which may be the synergy from the metal charge, bond ability of metal ions to carboxylate oxygen atom, and soft-hard acid-base properties. Furthermore, it can selectively sense of 2,4,6-trinitrophenol with a large quenching coefficient Ksv of 2.08 × 106 M-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app