Add like
Add dislike
Add to saved papers

Nanojoint Formation between Ceramic Titanate Nanowires and Spot Melting of Metal Nanowires with Electron Beam.

Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO2 ) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm2 ) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm2 ). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app