JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor.

Scientific Reports 2017 Februrary 18
Streptomyces bacteria form reproductive aerial hyphae that are covered with a pattern of pairwise aligned fibrils called rodlets. The presence of the rodlet layer requires two homologous rodlin proteins, RdlA and RdlB, and the functional amyloid chaplin proteins, ChpA-H. In contrast to the redundancy shared among the eight chaplins, both RdlA and RdlB are indispensable for the establishment of this rodlet structure. By using a comprehensive biophysical approach combined with in vivo characterization we found that RdlB, but not RdlA, readily assembles into amyloid fibrils. The marked difference in amyloid propensity between these highly similar proteins could be largely attributed to a difference in amino acid sequence at just three sites. Further, an engineered RdlA protein in which these three key amino acids were replaced with the corresponding residues from RdlB could compensate for loss of RdlB and restore formation of the surface-exposed amyloid layer in bacteria. Our data reveal that RdlB is a new functional amyloid and provide a biophysical basis for the functional differences between the two rodlin proteins. This study enhances our understanding of how rodlin proteins contribute to formation of an outer fibrillar layer during spore morphogenesis in streptomycetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app