Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites.

Biomedical Materials 2017 Februrary 18
Polylactic acid/Mg composites have been recently proposed for biodegradable osteosynthesis devices because, with regards to the neat polymer, they combine an enhanced biocompatibility and bioactivity with better mechanical properties, particularly creep strength. A question still arises about their bacterial behavior. For this purpose, composites of poly-L-D-lactic acid (PLDA) loaded with 1 and 10 wt.% of Mg microparticles were evaluated using Staphylococcus epidermidis, with special emphasis on the study of bacterial adhesion and biofilm formation. During biofilm formation the bacteria viability of the composites decreased up to 65.3% with respect to PLDA. These antibacterial properties do not compromise the cytocompatibility of the material as the composites enhanced the viability of mesenchymal stem cells and their osteogenic commitment. These findings provide an important added value to the biodegradable and biocompatible PLDA/Mg composites for the manufacture of osteosynthesis devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app