Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcutaneous carbon dioxide application accelerates muscle injury repair in rat models.

PURPOSE: Skeletal muscle injuries are commonly observed in sports and traumatology medicine. Previously, we demonstrated that transcutaneous application of carbon dioxide (CO2) to lower limbs increased the number of muscle mitochondria and promoted muscle endurance. Therefore, we aimed to investigate whether transcutaneous CO2 application could enhance recovery from muscle injury.

METHODS: Tibialis anterior muscle damage was induced in 27 Sprague Dawley rats via intramuscular injection of bupivacaine. After muscle injury, rats were randomly assigned to transcutaneous CO2-treated or -untreated groups. From each group, three rats were sacrificed at weeks one, two, four and six. At each time point, histology and immunofluorescence analyses were performed, and changes in muscle weight, muscle weight/body weight ratio, muscle fibre circumference, gene expression levels and capillary density were measured.

RESULTS: Injured muscle fibres were completely repaired at week six in the CO2-treated group but only partially repaired in the untreated group. The repair of basement and plasma membranes did not differ significantly between groups. However, expression levels of genes and proteins related to muscle protein synthesis were significantly higher in the CO2-treated group and significantly more capillaries four weeks after injury.

CONCLUSION: Transcutaneous CO2 application can accelerate recovery after muscle injury in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app