Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation and quantitative proteomics analysis of CK2α/α' (-/-) cells.

Scientific Reports 2017 Februrary 18
CK2 is a ubiquitous, constitutively active, highly pleiotropic, acidophilic Ser/Thr protein kinase whose holoenzyme is composed of two catalytic (α and/or α') subunits and a dimer of a non-catalytic β subunit. Abnormally high CK2 level/activity is often associated with malignancy and a variety of cancer cells have been shown to rely on it to escape apoptosis. To gain information about the actual "druggability" of CK2 and to dissect CK2 dependent cellular processes that are instrumental to the establishment and progression of neoplasia we have exploited the CRISPR/Cas9 genome editing technology to generate viable clones of C2C12 myoblasts devoid of either both the CK2 catalytic subunits or its regulatory β-subunit. Suppression of both CK2 catalytic subunits promotes the disappearance of the β-subunit as well, through its accelerated proteasomal degradation. A quantitative proteomics analysis of CK2α/α'(-/-) versus wild type cells shows that knocking out both CK2 catalytic subunits causes a rearrangement of the proteomics profile, with substantially altered level ( > 50%) of 240 proteins, 126 of which are up-regulated, while the other are down-regulated. A functional analysis reveals that up- and down-regulated proteins tend to be segregated into distinct sub-cellular compartments and play different biological roles, consistent with a global rewiring underwent by the cell to cope with the lack of CK2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app