JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Epac-Phospholipase Cε Pathway Regulates Endocannabinoid Signaling and Cocaine-Induced Disinhibition of Ventral Tegmental Area Dopamine Neurons.

Exchange protein directly activated by cAMP (Epac) is a direct effector for the ubiquitous second messenger cAMP. Epac activates the phospholipase Cε (PLCε) pathway. PLCβ has been linked to the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we report that Epac facilitates endocannabinoid-mediated retrograde synaptic depression through activation of PLCε. Intracellular loading of a selective Epac agonist 8-CPT-2Me-cAMP into ventral tegmental area (VTA) dopamine neurons enabled previously ineffective stimuli to induce depolarization-induced suppression of inhibition (DSI) and long-term depression of IPSCs (I-LTD) in the VTA. DSI and I-LTD are mediated by 2-AG since they were blocked by a diacylglycerol lipase inhibitor. The effects of 8-CPT-2Me-cAMP on DSI and I-LTD were absent in Epac2 and PLCε knock-out mice, but remained intact in Epac1 knock-out mice. These results identify a novel mechanism for on-demand synthesis of retrograde signaling 2-AG by the Epac2-PLCε pathway. We investigated the functional significance of Epac2-PLCε-2-AG signaling in regulating inhibitory synaptic plasticity in VTA dopamine neurons induced by in vivo cocaine exposure. We showed that cocaine place conditioning led to a decrease in the frequency and amplitude of spontaneous IPSCs and an increase in action potential firing in wild-type mice, but not in Epac2 or PLCε knock-out mice. Together, these results indicate that the Epac2-PLCε-2-AG signaling cascade contributes to cocaine-induced disinhibition of VTA dopamine neurons. SIGNIFICANCE STATEMENT 2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid that depresses synaptic transmission through stimulation of CB1 receptors. Among the six isoforms of phospholipase C (PLC; PLCβ, PLCγ, PLCδ, PLCε, PLCζ, PLCη), only PLCβ has been linked to 2-AG synthesis. Here we demonstrate that 8-CPT-2Me-cAMP, a selective agonist of the cAMP sensor protein Epac, enhances 2-AG-mediated synaptic depression in ventral tegmental area (VTA) dopamine neurons via activation of PLCε. These results identify a novel mechanism for 2-AG synthesis via activation of the Epac-PLCε pathway. Furthermore, we show that cocaine-induced conditioned place preference and disinhibition of VTA dopamine neurons were impaired in mice lacking Epac or PLCε. Thus, the Epac-PLCε signaling pathway contributes to cocaine-induced disinhibition of VTA dopamine neurons and formation of drug-associated memories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app