JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The STAT3-miRNA-92-Wnt Signaling Pathway Regulates Spheroid Formation and Malignant Progression in Ovarian Cancer.

Cancer Research 2017 April 16
Ovarian cancer spheroids constitute a metastatic niche for transcoelomic spread that also engenders drug resistance. Spheroid-forming cells express active STAT3 signaling and display stem cell-like properties that may contribute to ovarian tumor progression. In this study, we show that STAT3 is hyperactivated in ovarian cancer spheroids and that STAT3 disruption in this setting is sufficient to relieve chemoresistance. In an NSG murine model of human ovarian cancer, STAT3 signaling regulated spheroid formation and self-renewal properties, whereas STAT3 attenuation reduced tumorigenicity. Mechanistic investigations revealed that Wnt signaling was required for STAT3-mediated spheroid formation. Notably, the Wnt antagonist DKK1 was the most strikingly upregulated gene in response to STAT3 attenuation in ovarian cancer cells. STAT3 signaling maintained stemness and interconnected Wnt/β-catenin signaling via the miR-92a/DKK1-regulatory pathways. Targeting STAT3 in combination with paclitaxel synergistically reduced peritoneal seeding and prolonged survival in a murine model of intraperitoneal ovarian cancer. Overall, our findings define a STAT3-miR-92a-DKK1 pathway in the generation of cancer stem-like cells in ovarian tumors, with potential therapeutic applications in blocking their progression. Cancer Res; 77(8); 1955-67. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app