Add like
Add dislike
Add to saved papers

Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures.

The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90°C to 220°C, and microwave power, varied from 110W to 710W, are assessed. The effect of these parameters on both the structural characteristics and the environmental sustainability of the nanostructures is examined. The nanostructures were characterized by means of X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), ultraviolet-visible spectroscopy (UV-Vis), Photoluminescence (PL) and Brunauer-Emmett-Teller (BET) analysis. Crystalline size was found to be 22.40nm at 110W microwave power, 24.83nm at 310W, and 24.01nm at 710W. Microwave power and synthesis temperature were both directly proportional to the surface area. At 110W the surface area was 10.44m2 /g, at 310W 12.88m2 /g, and at 710W 14.60m2 /g; while it was found to be 11.64m2 /g at 150°C and 18.09m2 /g at 220°C. Based on these, a life cycle analysis (LCA) of the produced ZnO nanoparticles was carried out, using the ZnO surface area (1m2 /g) as the functional unit. It was found that the main environmental weaknesses identified during the production process were; (a) the use of ethanol for purifying the produced nanomaterials and (b) the electricity consumption for the ZnO calcination, provided by South Africa's fossil-fuel dependent electricity source. When the effect of the key synthesis parameters on environmental sustainability was examined it was found that an increase of either microwave power (from 110 to 710W) or synthesis temperatures (from 90 to 220°C), results in higher sustainability, with the environmental footprint reduced by 27% and 41%, respectively. Through a sensitivity analysis, it was observed that an electricity mix based on renewable energy could improve the environmental sustainability of the nanoparticles by 25%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app