Add like
Add dislike
Add to saved papers

Geometric Shape Induced Small Change of Seebeck Coefficient in Bulky Metallic Wires.

Sensors 2017 Februrary 11
In this paper, we report the results of slight changes in the thermopower of long W, Mo, Zn, Cu, brass, and Ti wires, that resulted from changes in the wire's diameter or cross-sectional area. The samples used in the tests had a round shape with a diameter that ranged from tens of micron to 2 mm, which was much larger than the corresponding mean free paths of these materials. Nevertheless, a small change in thermopower, at the order of 1-10 nV/K, was repeatedly observed when the wire diameter was changed, or when the cross-sectional area of the wire was altered by mechanical methods, such as grinding or splitting. The results are consistent with previous observations showing that the thermopower in metallic thin film stripes changes with their width, from 100 μm to as little as 70 nm, implying a universal, geometric-boundary-related size effect of thermopower in metal materials, that occurs at the nanometer scale and continuously decreases all the way to the millimeter scale. This effect could be applied in the manufacturing of high-temperature sensors with simple structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app