Add like
Add dislike
Add to saved papers

Effect of friction on dense suspension flows of hard particles.

Physical Review. E 2017 January
We use numerical simulations to study the effect of particle friction on suspension flows of non-Brownian hard particles. By systematically varying the microscopic friction coefficient μ_{p} and the viscous number J, we build a phase diagram that identifies three regimes of flow: frictionless, frictional sliding, and rolling. Using energy balance in flow, we predict relations between kinetic observables, confirmed by numerical simulations. For realistic friction coefficients and small viscous numbers (below J∼10^{-3}), we show that the dominating dissipative mechanism is sliding of frictional contacts, and we characterize asymptotic behaviors as jamming is approached. Outside this regime, our observations support the idea that flow belongs to the universality class of frictionless particles. We discuss recent experiments in the context of our phase diagram.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app