Add like
Add dislike
Add to saved papers

Neutral aggregation in finite-length genotype space.

Physical Review. E 2017 January
The advent of modern genome sequencing techniques allows for a more stringent test of the neutrality hypothesis of Darwinian evolution, where all individuals have the same fitness. Using the individual-based model of Wright and Fisher, we compute the amplitude of neutral aggregation in the genome space, i.e., the probability of finding two individuals at genetic (Hamming) distance k as a function of the genome size L, population size N, and mutation probability per base ν. In well-mixed populations, we show that for Nν<1/L, neutral aggregation is the dominant force and most individuals are found at short genetic distances from each other. For Nν>1, on the contrary, individuals are randomly dispersed in genome space. The results are extended to a geographically dispersed population, where the controlling parameter is shown to be a combination of mutation and migration probability. The theory we develop can be used to test the neutrality hypothesis in various ecological and evolutionary systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app