Add like
Add dislike
Add to saved papers

Translational diffusion across a free-standing smectic film above the bulk smectic-A-isotropic transition temperature.

Physical Review. E 2017 January
Calculations of translational self-diffusion coefficient in free-standing smectic films during a series of layer-thinning transitions as the temperature is raised above the bulk smectic-A-isotropic transition have been carried out. A molecular model based upon the random walk theory is applied for calculating the translational diffusion coefficient (TDC) D_{∥} across the smectic film both in the bulk of the film, as well as in the vicinity of the bounding surfaces. Calculations of D_{∥} require the set of the orientational and translational order parameters (OPs) which have been obtained by using the extended McMillan approach with anisotropic forces. The effect of E on the orientational and translational OPs, as well as on the TDC of smectic films has been investigated. A reasonable agreement between the theoretically predicted and the experimentally obtained data on the TDC in the bulk of the partially fluorinated H10F5MOPP film has been obtained. We also found, in agreement with the experimentally observed behavior of D_{∥}(N)(N=25,13,11,10), that the translational diffusion coefficient in the bulk of the film gradually increases as the film thickness N is decreased.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app