Journal Article
Review
Add like
Add dislike
Add to saved papers

Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma.

Multiple myeloma (MM) is a hematological malignancy that remains incurable, with relapse rates >90%. The main limiting factor for the effective use of chemotherapies in MM is the serious side effects caused by these drugs. The emphasis in cancer treatment has shifted from cytotoxic, non-specific chemotherapies to molecularly targeted and rationally designed therapies showing greater efficacy and fewer side effects. Traditional chemotherapy has shown several disadvantages such as lack of targeting capabilities, systemic toxicity, and side effects; low therapeutic index, as well as most anticancer drugs, has poor water solubility. Nanoparticle delivery systems (NPs) are capable of targeting large doses of chemotherapies into the target area while sparing healthy tissues, overcoming the limitations of traditional chemotherapy. Here, we review the current state of the art in nanoparticle-based strategies designed to treat MM. Many nanoparticle delivery systems have been studied for myeloma using non-targeted NPs (liposomes, polymeric NPs, and inorganic NPs), triggered NPs, as well as targeted NPs (VLA-4, ABC drug transporters, bone microenvironment targeting). The results in preclinical and clinical studies are promising; however, there remains much to be learned in the emerging field of nanomedicine in myeloma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app