Add like
Add dislike
Add to saved papers

Lipoprotein lipase activity does not predict very low-density lipoprotein-triglyceride fatty acid oxidation during exercise.

Exercise lowers plasma triglyceride levels, but the physiological mechanisms remain not fully elucidated. Lipoprotein lipase (LPL) is a key enzyme in facilitating fatty acid uptake from lipoproteins. As exercise increases the efficiency of very low-density lipoprotein-triglyceride (VLDL-TG) oxidation, we hypothesized that muscle LPL activity would be a rate-limiting step and predict VLDL-TG Fatty acids oxidation during exercise. Sixteen healthy, lean subjects (eight men and eight women) were examined before and during an acute exercise bout (90 minutes at 50% of VO2-max). Heparin-releasable LPL activity was measured in muscle and adipose tissue biopsies. Breath (14) CO2 was measured after a primed-constant infusion of ex vivo labeled [(14) C]-triolein VLDL-TG. Fractional VLDL-TG storage was measured in adipose tissue biopsies. Exercise did not affect muscle LPL activity (P=.30). No association was observed between muscle LPL activity and VLDL-TG oxidation, neither in the basal state (P=.17) nor during exercise (P=.83). Exercise did not affect upper body or lower body adipose tissue LPL activity (both P=.92). The basal adipose tissue fractional VLDL-TG storage (abdominal.13%±9%; femoral 17%±10% (P=.18)) was not associated with upper body (P=.56) or lower body (P=.44) subcutaneous adipose tissue LPL activity. Muscle LPL activity does not predict VLDL-TG oxidation during rest or exercise. In addition, adipose tissue LPL activity was not associated with VLDL-TG storage during rest. This suggests that LPL activity is present in excess of what is required to facilitate lipid uptake for oxidation during both rest and exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app