Add like
Add dislike
Add to saved papers

Significant Differences in the Bone of an Isogenic Inbred Versus Nonisogenic Outbred Murine Mandible: A Study in Rigor and Reproducibility.

Inattention to differences between animal strains is a potential cause of irreproducibility of basic science investigations. Accordingly, the authors' laboratory sought to ensure that cross-comparisons of results generated from studies of mandibular physiology utilizing the Sprague Dawley and Lewis rat strains are valid. The authors specifically investigated baseline histomorphometrics, bone mineral density, and biomechanical strength of the unaltered endogenous mandibles of the inbred, isogenic Lewis rat, and the outbred, nonisogenic Sprague Dawley rat to determine if they are indeed equal. The authors hypothesized that little difference would be found within these metrics.The authors' study utilized 20 male Lewis and Sprague Dawley rats, which underwent no manipulation other than final dissection and analysis. Ten rats from each strain underwent bone mineral density and biomechanical strength analysis. The remaining rats underwent histological analysis. Descriptive and bivariate statistics were computed and the P value was set at 0.05.Lewis rats had a significantly greater number of empty lacunae. Sprague Dawley rats exhibited a significantly greater ratio of bone volume-to-total volume, bone mineral density, tissue mineral density, bone volume fraction, and total mineral content. No differences were found during biomechanical testing.This study demonstrates that differences exist between the Lewis and Sprague Dawley rat within unaltered baseline mandibular tissue. However, these differences appear to have limited functional impact, as demonstrated by similar biomechanical strength metrics. Other specific differences not addressed in this manuscript may exist. However, the authors believe that researchers may confidently cross-compare results between the 2 strains, while taking into account the differences found within this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app