Add like
Add dislike
Add to saved papers

Compressive-Sensing-Based Structure Identification for Multilayer Networks.

The coexistence of multiple types of interactions within social, technological, and biological networks has motivated the study of the multilayer nature of real-world networks. Meanwhile, identifying network structures from dynamical observations is an essential issue pervading over the current research on complex networks. This paper addresses the problem of structure identification for multilayer networks, which is an important topic but involves a challenging inverse problem. To clearly reveal the formalism, the simplest two-layer network model is considered and a new approach to identifying the structure of one layer is proposed. Specifically, if the interested layer is sparsely connected and the node behaviors of the other layer are observable at a few time points, then a theoretical framework is established based on compressive sensing and regularization. Some numerical examples illustrate the effectiveness of the identification scheme, its requirement of a relatively small number of observations, as well as its robustness against small noise. It is noteworthy that the framework can be straightforwardly extended to multilayer networks, thus applicable to a variety of real-world complex systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app