JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors.

Magnetic relaxation switching assay (MRSw)-based nanosensors respond to the changes of transverse relaxation time (T2) of water molecules resulted from the analyte-induced aggregation and disaggregation of magnetic nanoparticles (MNPs). This strategy has been widely applied to the detections of various substrates from heavy metal ions to organic pollutants, proteins, nucleic acids, bacteria and viruses, and specific cells. Compared with other nanosensors, MRSw-based nanosensors not only are free from the background interferences, signal bleaching, and quenching but also overcome light scattering from samples without pretreatments. Therefore, MRSw-based nanosensors have been developed as real-time and on-site detection platforms for environmental protection, food safety, and risk assessment. This review summarizes the latest developments of the principles, the applicable magnetic nanoparticles, and the exploited environmental and biological applications of MRSw-based nanosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app