Add like
Add dislike
Add to saved papers

Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations.

Archives of Toxicology 2017 September
Human data about the potency of ethyl acrylate to evoke sensory irritation is currently not available. Therefore, we conducted an experimental exposure study and the magnitude of chemosensory effects in healthy human volunteers was mathematically modeled by combining the factors current concentration (c) and duration/time (t). In a repeated-measures design, 19 subjects were exposed for 4 h to constant and varying concentrations (including peaks of 5 and 10 ppm) of ethyl acrylate with either a 2.5 or 5 ppm time-weighted average (TWA) concentration. Clean air served as control condition. Nasal lavage fluid, eye blinking frequencies, and rhinomanometry were used as physiological measures of sensory irritation. Several subjective ratings assessed olfactory and trigeminal perceptions. The blinking frequency was significantly increased during the varying 5 ppm condition. Regardless of the TWA concentration, varying exposures caused stronger effects than constant exposures. Our mathematical modeling showed that olfactory perceptions generally decreased over time while ratings of eye irritation increased over time even under the constant 5 ppm condition. Including the current concentration in the mathematical modeling always increased the goodness of fit substantially. The results showed that the intensity of sensory irritation could be predicted best with a complex c × t model. During the 2.5 ppm conditions, only the current concentration predicted the ratings and time-dependent processes could not be observed. However, in both 5 ppm TWA conditions strong eye irritations and increased blinking frequency, only at the end of the 4-h exposures a dose-dependency of these adverse effects was clearly shown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app