Add like
Add dislike
Add to saved papers

DNA methylation-mediated caspase-8 downregulation is associated with anti-apoptotic activity and human malignant glioma grade.

The methylation-mediated silencing of tumor suppressors, including key apoptosis-related genes plays an important role in the pathogenesis and therapeutic resistance in human cancer. In this study, we aimed to elucidate the role and mechanisms of resistance to apoptosis with caspase-8 gene downregulation in human malignant glioma. Reverse transcription-polymerase chain reaction (RT-PCR) and methylation-specific PCR (MSP) were used to examine caspase-8 expressoin at the mRNA level and gene methylation status in normal brain tissue, glioma tissue and cancer cell lines. Caspase-8 protein kinase activity was measured by caspase-8 colorimetric assays; cell apoptosis was examined by Annexin V/propidium iodide (PI) staining; the rates of tumor cell apoptosis were detected by flow cytometry. Our results revealed that caspase-8 gene silencing may result from the methylation of its gene promoter in human glioma tissues. The expression of caspase-8 at the mRNA level was significantly associated with the grade of human glioma. In certain human cancer cell lines, the expression at the mRNA level, protein kinase activity and tumor cell anti-apoptotic activity and resistance were related to the methylation status of the caspase-8 gene promoter. Thus, the caspase-8 gene methylation status may be used as an indicator for the early diagnosis of human malignant glioma. Combination therapy with demethylation reagents may overcome therapeutic resistance in the same malignancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app