Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions.

Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. Here we test how expression of the cyanobacterial, bifunctional fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) affects carbon assimilation and seed yield (SY) in a major crop (soybean, Glycine max). For three growing seasons, wild-type (WT) and FBP/SBPase-expressing (FS) plants were grown in the field under ambient (400 μmol mol−1) and elevated (600 μmol mol−1) CO2 concentrations [CO2] and under ambient and elevated temperatures (+2.7 °C during daytime, +3.4 °C at night) at the SoyFACE research site. Across treatments, FS plants had significantly higher carbon assimilation (4–14%), Vc,max (5–8%), and Jmax (4–8%). Under ambient [CO2], elevated temperature led to significant reductions of SY of both genotypes by 19–31%. However, under elevated [CO2] and elevated temperature, FS plants maintained SY levels, while the WT showed significant reductions between 11% and 22% compared with plants under elevated [CO2] alone. These results show that the manipulation of the photosynthetic carbon reduction cycle can mitigate the effects of future high CO2 and high temperature environments on soybean yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app