Add like
Add dislike
Add to saved papers

Discriminating single-molecule sensing by crown-ether-based molecular junctions.

Journal of Chemical Physics 2017 Februrary 15
Crown-ether molecules are well known to selectively bind alkali atoms, so by incorporating these within wires, any change in electrical conductance of the wire upon binding leads to discriminating sensing. Using a density functional theory-based approach to quantum transport, we investigate the potential sensing capabilities of single-molecule junctions formed from crown ethers attached to anthraquinone units, which are in turn attached to gold electrodes via alkyl chains. We calculate the change in electrical conductance for binding of three different alkali ions (lithium, sodium, and potassium). Depending on the nature of the ionic analyte, the conductance is enhanced by different amounts. This change in electrical conductance is due to charge transfer from the ion to molecular wire causing the molecular resonances to shift closer to the electrode Fermi energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app